
Sopheon Accolade®

Accolade Web API Reference Guide

Version: 16.1

About Sopheon Accolade®

Document Name: Accolade Web API Reference Guide
Document Version: 1
Software Version: Sopheon Accolade 16.1
Document Date: November 2023

Ownership of Software and Documentation
The Sopheon® software described in this documentation is furnished under a license agreement and may be used only in
accordance with the terms of that license agreement.

Sopheon Corporation and its associated Sopheon Group companies, including its subsidiaries, its immediate holding
company and its ultimate holding company (together, "Sopheon") have created and own all rights to the software and
documentation. Licensees of the software have purchased a limited right to use the software in accordance with their license
agreement.

Copyright Notice
All materials in this documentation or in the software, including software code, pages, documents, graphics, audio and video,
are copyright © 2023 Sopheon. All rights reserved.

Certain Sopheon software modules incorporate portions of third party software, and the copyright of the authors of such third
party software are hereby acknowledged. All rights reserved.

All the information on this documentation is proprietary and no part of this publication may be copied without the express
written permission of Sopheon.

Trademarks
"Accolade", "Sopheon", and the Sopheon logo are registered trademarks of Sopheon. "Vision Strategist", the Vision Strategist
logos, "Idea Lab", and "Process Manager" are trademarks of Sopheon. A more complete list of Sopheon trademarks is
available at www.sopheon.com.

"Microsoft", "Windows", "Excel" , "PowerPoint" and "Microsoft Teams" are registered trademarks of Microsoft Corporation. A
complete list of Microsoft trademarks is available at www.microsoft.com . "Lotus Notes" is a registered trademark of
International Business Machines Corporation. "WinZip" is a registered trademark of WinZip Computing, Inc. "Stage-Gate" is a
registered trademark of the Product Development Institute. Other product names mentioned in this Help systemmay be
trademarks of their respective companies and are hereby acknowledged.

"Slack" is a registered trademark of Salesforce Technologies, LLC.

Names of persons or companies and other data contained in examples set forth in this user documentation are fictitious unless
otherwise noted.

No Warranty
The technical documentation is being delivered to you AS-IS, and Sopheon makes no warranty as to its accuracy or use. Any
use of the technical documentation or the information contained therein is at the risk of the user. Documentation may include
technical or other inaccuracies or typographical errors. Sopheon reserves the right to make changes without prior notice. In no
circumstances will Sopheon, its agents or employees be liable for any special, consequential or indirect loss or damage arising
from any use of or reliance on any materials in this documentation or in the software.

Patents
Aspects of Sopheon software are protected by U.S. Patents 5634051, 6632251, and 6526404; European Patent EP0914637;
and by U.K. Patent GB2341252A.

Sopheon Accolade Version 16.1 ii

http://www.microsoft.com/

Accolade Web API Reference Guide

Sopheon Accolade Version 16.1

Contents

About this Guide 5

Accolade Web API Overview 7

Accolade as a RESTful API 8

Accolade API Versioning 8

Accolade API Authentication and Access 8

API Authentication as an Accolade User 9

User Authentication Setup 10

Requesting the Accolade Authentication Mode 11

Requesting an Access Token 11

Call the API with the Access Token 12

SSO with two-factor or multi-factor authentication 12

Configuration 13

Appendix A Accolade Web API Developer References 15

Accolade Web API Design 16

Versioning 16

Restrictions and Rate Limits 16

Resources 17

Verbs 17

Status Codes 18

Payload 19

Actions and Functions 20

OData 20

Paging, Filtering, and Data Shaping 20

Alternative Keys 22

Caching 23

Concurrency 23

Cross-Origin Resource Sharing (CORS) 23

Security 23

Batch Support 24

Standardized Properties 26

iii

Accolade Web API Reference Guide

Accolade Web API Navigation 28

iv

Sopheon Accolade Version 16.1 5

About this Guide

Welcome to the Sopheon Accolade Web API Reference Guide. The Web API allows Accolade
users to design and implement customer configuration solutions that integrate with the core
Accolade application.

This guide contains instructions for setting up user authentication when creating API calls to
access Accolade information, as well as design information for BI data scientists and
developers.

This information presented in this guide is intended for use with the Accolade Web API v. 2.5,
to be used in conjunction with Sopheon Accolade v.16.1.

Note: Your company may use other components of the Accolade Web API
resources for other purposes in your business. This guide discusses only the
information you need to access the Accolade Web API resources for use in
Accolade configuration. For additional information about the Accolade Data
API area, please contact Sopheon Customer Support or refer to the Data API
topics in the Accolade application main Help.

About this Guide

Accolade Web API Reference Guide

Assumptions
This guide assumes you are familiar with Accolade. For more information about Accolade, see
the Accolade online Help available from within the main application.

Font Conventions
l This bold font is used for important words and the names of the items you need to
identify.

Create a SQL account named “Geneva”, and give this account the VS_Write database
role.

l This fixed-width font is used for examples of code, paths, and URLS.

https//:your-server-name:port-number/

l This italic font is used for document names.

l An italic font enclosed in brackets shows what information is displayed in this location
when the information is changeable, rather than fixed.

Process Document - Smart Excel <version>.xlt

l Blue text indicates a cross-reference link that you can click to take you to that location.

Icon Conventions

- Indicates a tip to assist with Accolade configuration or management.

- Indicates an example use case to assist with Accolade component configuration.

Important! This is an important statement. Read it carefully before proceeding with
an action.

Related Documentation
Sopheon Accolade Web API Reference Guide

Contacting Technical Publications
To send comments and suggestions regarding this document, send email to
techpubs@sopheon.com.

6

Sopheon Accolade Version 16.1 7

Accolade Web API Overview
An application programming interface (API) is an interface that enables interaction with other
software. APIs let programs share information and influence each others' behavior through a
"request and response" method of conversation. This conversation is similar to a conversation
between people, but with defined rules about the type of communication allowed. APIs can be
used both to retrieve and update data.

Chapter 1

Accolade Web API Overview

Accolade Web API Reference Guide

Accolade as a RESTful API
The Accolade Web API is a private RESTful web service, intended for use by company assets
and by our customers. A RESTful API is based on representational state transfer (REST), an
architectural style and approach to communications often used in web services development.
A RESTful web application exposes information about itself in the form of information about its
resources. It also enables the client to take actions on those resources, such as create new
resources (i.e. create a new user) or change existing resources (i.e. edit a post).

Accolade’s Web API conforms to the Richardson Maturity Model Level 2. It is implemented
with ASP.Net Web API 2.2 with attribute routing, and follows OData v3 conventions. JSON is
the media type that is supported for request and response payloads.

Accolade API Versioning
Accolade v.16.1 currently supports Accolade Web API version 2.5. The Accolade Web API is
semantic versioned, and the version number is independent from the Accolade version. The
version number has the MAJOR.MINOR format and is incremented as follows:

l MAJOR version when there are incompatible API changes.
l MINOR version when functionality is added in a backwards-compatiblemanner.

Accolade API Authentication and Access
Accolade has several areas within its API designed to retrieve the appropriate information
based on the application. Before users can make requests, they need to have a method for
authenticating the requests. The Accolade API has two methods for verifying requests:

l using authentication tokens to identify and verify the users.

l via a generated API key, which identifies the application making the API call.

Access to the Accolade Web API is available to any developer, and requests are authenticated
via the user's Accolade credentials. The Web API areas can be used to create customized
configuration solutions for users within your company, such as creating an advanced layout
which uses functionality in a non-standard way, or retrieving the results of an Accolade online
report for use in process configuration.

Access to the Accolade Data API requires the use of an API key, which can be created by
users with the Data Analyst role and then shared with appropriate users within your
organization. The Data API area can be used to retrieve project data and other data from the
Accolade database, and display the Accolade information using your company's BI
application.

8

Sopheon Accolade Version 16.1 9

API Authentication as an Accolade User
Access to the Accolade Web API areas is available to any in-network authorized developer,
and requests are authenticated via the user's Accolade credentials.

Chapter 2

API Authentication as an Accolade User

Accolade Web API Reference Guide

Authentication schemes are designed to serve two main purposes:

l User authentication - verify that the API user making the call has the appropriate
credentials.

l User authorization - check whether the API user making the call has permission to
make this kind of request.

Authentication schemes provide a secure way to identify the API caller. An endpoint can also
check with the authentication token to confirm that permission has been granted for it to make
a call to the API. Based on the information available on the authentication token, the API server
determines whether to authorize that particular request.

Important! The Accolade Web API is sensitive to the user roles and rights that are
assigned within Accolade. When creating API calls that will be made on behalf of
an Accolade user, be mindful that the user must have the appropriate Accolade
system roles and rights to access the data or perform the action included in the call.
For example, TeamMembers do not have the appropriate rights to create projects,
therefore it would not make sense to assign a POST call that creates projects for
this user to execute.

Note: Roles and rights are not applicable to calls made to the Accolade Data API
that are authenticated via a generated API key. See the API Authentication as an
Application topic in the online Help for more information.

User Authentication Setup
Access to the Accolade Web API is available to any in-network authorized developer, and
requests are authenticated via the user's Accolade credentials using the Bearer authentication
method.

If the call is made from outside Accolade, you should use the /Token
and/or the /Account/Authenticate endpoints to authenticate the
user. If the client is a browser, CORS should be enabled on Accolade as
well.

10

Accolade Web API Reference Guide

Sopheon Accolade Version 16.1

Requesting the Accolade Authentication Mode

To figure out the Accolade authentication mode:

Request Response

POST https://<server>/Token

Content-Type: application/json

{

"grant_type": "auth_mode"

}

200 OK

Content-Type: application/json;
charset=utf-8

{

"auth_mode": "Windows"

}

Modes are: Windows, SSO and LDAP.

Requesting an Access Token

To request a user-based access token:

Request Response

POST https://<server>/Token

Content-Type: application/json

{

"grant_type": "password",

"username": "<login name>",

"password": <password>"

}

200 OK

Content-Type: application/json;
charset=utf-8

{

"access_token": "<token>",

"expires_in": "<seconds>",

"refresh_token": "<token>"

}

The access token expires in expires_in seconds. For refresh token, see the Refresh Tokens
section below.

This works for all authentication modes unless SSO is configured with 2-factor (2FA) or multi-
factor authentication (MFA). Currently there is no way to determine if 2FA or MFA is enabled.
See SSO with two-factor or multi-factor authentication for more information.

Refresh Tokens

If refresh tokens is enabled, you can use a refresh token to get a new access token without
supplying the user’s credentials again. The refresh token expires after 365 days or if the

11

#ReefreshToken

API Authentication as an Accolade User

Accolade Web API Reference Guide

Accolade user is disabled or deleted.

To get a new access token from a refresh token:

Request Response

POST https://<server>/Token

Content-Type: application/json

{

"grant_type": "refresh_token",

"refresh_token": "<refresh token>"

}

200 OK

Content-Type: application/json;
charset=utf-8

{

"access_token": "<token>",

"expires_in": "<seconds>",

"refresh_token": "<token>"

}

Note that the returned refresh token is a new token with a new expiration window.

Call the API with the Access Token

Each call to the API needs a HTTP Authorization header with Bearer scheme to
authenticate the user:

Request Response

GET https://<server>/api/v2/core/projects

Authorization: Bearer <access token>

SSO with two-factor or multi-factor authentication

Single sign-on authentication (or SSO authentication) allows users to log in once to access
multiple applications, services. and accounts.

If the API client runs in a browser you should redirect to:
https://<server>/Account/Authenticate?redirectUrl=<url>. This will show the
SSO login dialog in the browser window. After successful login, the browser is redirected to the
redirectUrl and the access token is returned as a query string. The query string is a
base64 encoded JSON object (?token=<base64 string>).

If you want to cover all SSO configurations, with or without 2FA or MFA, don't use the /Token
endpoint but always use /Account/Authenticate endpoint for the Federation
authentication mode.

12

Accolade Web API Reference Guide

Sopheon Accolade Version 16.1

Configuration

Here are the settings that controls the authentication mode and token lifetimes.

Settings Value

auth:AllowedClientUR
Is

Allowed redirect URLs on
https://<server>/Account/Authenticate?redire
ctUrl=<url> requests.

auth:AuthenticationM
ode

Windows or Federation. Defaults to Windows.

auth:SessionLifetime Access token lifetime. Defaults to the Accolade
SessionTimeout setting.

auth:EnableRefreshT
oken

If refresh token is be supported or not. Defaults to True.

auth:EnableWebRedir
ect

Whether or not the redirect to the identity provider should be
done by a client-side redirect instead of returning a 302
Redirect response. Defaults to True.

auth:RefreshTokenLif
etime

Refresh token lifetime. Defaults to 365 days.

Notes:
l If the Web API is called from within Accolade, for example in the configuration of
a quick grid, the user is already authenticated and no further authentication is
needed.

l All API requests should be made over HTTPS. Calls made over plain HTTP
could potentially expose information such as passwords or client secrets to other
users within your network.

l The Accolade Web API technical documentation, which includes examples, can
be accessed at <server name>/help/apihelp.

l In you are unfamiliar with working in APIs or require more technical support,
contact Sopheon's Consulting group for more information on training
opportunities or additional services.

13

Accolade Web API Reference Guide14

Sopheon Accolade Version 16.1 15

Accolade Web API Developer
References

This section contains developer information about the Accolade Web API resources.

Appendix A

Appendix A Accolade Web API Developer References

Accolade Web API Reference Guide

Accolade Web API Design
The Accolade API is a private RESTful web service, intended for use by company assets and
by our customers. Accolade's API conforms to the Richardson Maturity Model Level 2. It is
implemented with ASP.NETWeb API 2.2 with attribute routing, and follows OData v3
conventions.

Versioning

The Accolade Web API is semantic versioned, and the version number is independent from
the Accolade version. The version number has the MAJOR.MINOR format and is incremented
as follows:

l MAJOR version when there are incompatible API changes.
l MINOR version when functionality is added in a backwards-compatiblemanner.

Accolade v.16.1 currently supports Accolade Web API version 2.5.

Restrictions and Rate Limits

The only restrictions to the Accolade API are via authentication and authorization as follows:

l User authentication - verify that the API user making the call has the appropriate
credentials.

l User authorization - a check whether the API user making the call has permission to
make this kind of request.

Important! The Accolade Web API is sensitive to the user roles and rights that are
assigned within Accolade. When creating API calls that will be made on behalf of
an Accolade user, be mindful that the user must have the appropriate Accolade
system roles and rights to access the data or perform the action included in the call.
For example, TeamMembers do not have the appropriate rights to create projects,
therefore it would not make sense to assign a POST call that creates projects for
this user to execute.

Note: Roles and rights are not applicable to calls made to the Accolade Data API
that are authenticated via a generated API key. See Accolade Web API
Authentication as an Application for more information.

Rate limits determine how frequently you can call a particular endpoint. While Accolade's API
does not currently impose any rate limits, be mindful that API usage may affect the
performance of Accolade; you may wish to schedule large updates or requests outside of peak
usage times.

16

../../../../../Content/WebAPI/CON_APPAPIAuthentication.htm
../../../../../Content/WebAPI/CON_APPAPIAuthentication.htm

Accolade Web API Reference Guide

Sopheon Accolade Version 16.1

Resources

A resource is uniquely identified by its URI (or URL). Resources URIs must follow the following
conventions:

l Resources are grouped in areas. Examples: core, administration,
configuration.

l Resources are nouns that convey meaning. Examples: /api/v2/core/projects,
/api/v2/configuration/processmodels.

l Resource names should be pluralized. Examples: /api/v2/core/projects,
/api/v2/administration/users.

l A single resource is addressed with its ID in parenthesis after the resource name.
Examples: /api/v2/core/projects(1), /api/v2/administration/users
(42).

l Alternatively, a resource may be addressed with its name or system name in single
quotes. Examples: /api/v2/core/projects('Project%201'),
/api/v2/configuration/metrics('Costs').

l Resources represent contained structure. Structure is represented by hierarchical
resource paths. Examples: /api/v2/core/projects(1)/metrics,
/api/v2/core/projects(1)/metrics(111).

l Filters, sorting, etc. aren’t resources thus should be in the query string of the URL.
Example: /api/v2/core/projects?$orderby=Name.

Resource IDs should be unique, static and remain the same over time.

Verbs

The following verbs (HTTP Methods) are supported:

HTTP
Method Request Payload Sample URI Response Pay-

load

GET - /api/v2/core/projects

/api/v2/core/projects
({projectID})

Resource
collection

Single
resource

POST Single resource /api/v2/core/projects Single
resource

PUT Single resource /api/v2/core/projects
({projectID})

Single project

PATCH Batch of partial
resources

Partial resource

/api/v2/core/projects

/api/v2/core/projects
({projectID})

Resource
collection

17

Appendix A Accolade Web API Developer References

Accolade Web API Reference Guide

HTTP
Method Request Payload Sample URI Response Pay-

load

Single
resource

DELETE - /api/v2/core/projects
({projectID})

-

The difference between PUT and PATCH is that PUT will update the
whole resource, so for not supplied properties their default values will be
used. PATCH only updates supplied properties.

Status Codes

Status Code HTTP Methods Comments

Level 200 - Success
200 - OK GET, PUT, PATCH And POST for

Actions.
201 - Created POST
204 - No content DELETE
Level 400 - Client Errors
400 - Bad request POST, PUT, PATCH Invalid or corrupt

request payload,
the response
body contains
the error
message.

401 - Unauthorized All No or invalid
authentication
details provided.

403 - Forbidden All Authenticated
user doesn't
have access to
resource.

404 - Not found GET, PUT, PATCH,
DELETE

Resource not
found.

405 - Method not allowed All HTTP method
not allowed on
resource.

18

Accolade Web API Reference Guide

Sopheon Accolade Version 16.1

Status Code HTTP Methods Comments

406 - Not acceptable All Media type not
supported
(response
payload).

409 - Conflict All Caching or
concurrency
conflict (or
resource already
exists when
trying to create
it).

415 - Unsupported media type POST, PUT, PATCH Media type not
supported
(request
payload).

Level 500 - Server Faults
500 - Internal server error All Error will be

logged in the
Accolade log.
No error
message will be
returned as this
exposes
implementation
details.

Payload

Resource != Business Model != Entity Model

Resources are mapped to one or more entities or their subsets. For example, a metric can
contain both project and process model related properties.

A entity can be represented by more than 1 resource, depending on their usages. For
example, a metric can have a separate resource type for: process model, project, matrix,
planning/roadmap, etc.

All resources will have standardized property names and standardized value types as follows:

l Enum values are represented as strings and not as their underlying numeric value.
l Dates as ‘YYYY-MM-DD’ strings.
l Timestamps as ‘YYYY-MM-DDThh:mm:ss’ strings.

19

Appendix A Accolade Web API Developer References

Accolade Web API Reference Guide

Related resources will be represented with their ID and can be expanded (with the $expand
option) to full resource objects to reduce server round trips; for example, the team leader ID on
a project can be expanded to a user resource.

Only JSON (media type: application/json) will be supported for request and response
payloads. JSON literals will be in camel-case. Null values will be omitted from the payload to
reduce network bandwidth.

Actions and Functions

Besides resources, actions and functions can be exposed by the API; this should be used
sparingly.

The difference between actions and functions is that actions can have side effects, and
functions do not. Both actions and functions can return data.

Actions and function should be named like C# method names, in other words, the name
should be a verb phrase. Actions should be invoked with a POSTmethod, functions with a
GETmethod.

Actions and functions can be global, for a resource collection or for a single resource.

Examples:

api/v2/administration/users/SetPushSubscription

api/v2/core/ExecuteQuery(123)

api/v2/core/projects(42)/phases(1)/gate/keepers(5})/EnterVote

api/v2/core/projects(42)/MigrateProject(111)

OData

A request returns a maximum of 50 items in a collection, for example api/v2/Projects
returns 50. To avoid the limitation you can use the OData $top token and set the results count
to any number you need in the form:

api/v2/Projects?$top=100000

OData parameters are passed as a regular query string. For example
http://domain.com/page?$top=100&$skip=10 will pass 2 parameters, $top and
$skip. You can pass as many parameters as you like, separated with a &.

Paging, Filtering, and Data Shaping

The following options are supported on resources collections ($expand and $select are
also applicable on a single resource).

20

Accolade Web API Reference Guide

Sopheon Accolade Version 16.1

Option Descrip-
tion Format

$expand Expands
related
entities
inline.

$expand is a comma-separated list of related resources to
be included in line with the retrieved resources.

Nested resources can be expressed using a slash (‘/’), max
depth is 10.

Example:
/api/v2/core/projects
(42)?$expand=Metrics,Phases/Stage/Deliverabl
es

$filter Filters
the
results,
based on
a
Boolean
conditio
n.

$filter is a Boolean expression to filter a collection of
resources.

The expression specified with the filter is evaluated for each
resource and when the expression evaluates to true, the
resource is included in the result.

All OData v3 operators and functions are supported; see
http://www.odata.org/documentation/odata-version-3-0/url-
conventions/, section ’5.1.2. Filter System Query Option’.

Example:
/api/v2/core/projects?$filter=Name+eq+'Ajax'

Nested $filter statements are not supported
($expand=Metrics($filter=DataType+eq+'String'))

$inlineco
unt

Include
the total
count of
matching
entities
in the
respons
e.

$inlinecount with the value allpages returns the total number
of resources in the (filtered) collection in the all-pages-count
HTTP header.

Example:
/api/v2/core/projects?$inlinecount=allpages

$orderby Sorts the
results.

$orderby is a comma-separated list of property order clauses
for resources to be returned in either ascending order using
asc or descending order using desc.

If asc or desc not specified, then the resources will be
ordered in ascending order.

Example:
/api/v2/core/projects?$orderby=TeamLeader+as
c,Name+desc

Nested $orderby statements are not supported

21

Appendix A Accolade Web API Developer References

Accolade Web API Reference Guide

Option Descrip-
tion Format

($expand=Metrics($orderby=SystemName)).

$select Selects
which
propertie
s to
include
in the
respons
e.

$select is a comma-separated list of resource properties to
be returned.

Nested resources can be expressed using a slash (‘/’), max
depth is 10.

Example:
/api/v2/core/projects
(42)?$expand=Metrics&$select=Name,Code,Metri
cs/SystemName

$skip Skips the
first in
results.

$skip is a number that defines the number of resources to be
skipped and not included from a (filtered) collection.

Example:
/api/v2/core/projects?$skip=10

$top Returns
only the
first in
the
results.

$top is a number that defines the number of resources to be
returned from a (filtered) collection.

If not supplied, all resources in collection are returned.

Example:
/api/v2/core/projects?$top=5

As of Accolade v. 13.2, support has been added for some DTO's to allow
for filtering by expanded properties. Example:
/api/v2/core/projects?$expand=TeamLeader&$filter=TeamLeader/Name
+eq+%27FirstName%20LastName%27

Notes:
If a resource or action returns tabular data, the format query string can be used to
shape the tabular data: List, Table and Table with Headers:

l api/v2/core/ExecuteQuery

l api/v2/core/RunReport

l api/v2/core/projects/matrices

l api/v2/configuration/referencetables

Alternative Keys

The APIv2 resource ID arguments can have 3 types of values:

22

Accolade Web API Reference Guide

Sopheon Accolade Version 16.1

l Int32: resource(123)

l String: resource("name")

l Enum: resource(Flag)

Caching

Each response will define itself a cacheable or not using HTTP Caching (RFC 2616 and RFC
7234 standards). Caching is used to eliminate the number of requests (aka network-
roundtrips; uses an expiration model) and to eliminate the need to send full responses (aka
network bandwidth; uses a validation model).

The following cache types will be supported in the future:

l Client Cache (== Private Cache), lives on the client

l Gateway Cache (== Shared Cache), lives on the server

l Proxy Cache (== Shared Cache), lives on the network

The expiration model will be defined with the Cache-Control header. The validation model will
be defined with the Last-Modified and ETag (strong and/or weak) headers. Only no-
cache is supported for now.

Notes:
api/v2/core/ExecuteQuery and api/v2/core/RunReport already support
Last-Modified and ETag to avoid re-executing queries and reports when paging is
used ($top and $skip).

Concurrency

APIv2 will follow current Accolade practices with respect to concurrency: last save wins.

Cross-Origin Resource Sharing (CORS)

JSONP support is dropped in APIv2. Only CORS will be supported. The existing Accolade
CORS infrastructure will be used.

Security

APIv2 follows all Accolade visibility, accessibility and manageability rules for resources and
their underlying entities (role, access groups, security list, security profiles, teammembership,
etc.).

If APIv2 is called from within Accolade (i.e. Quick Grids), the user is already authenticated and
the session and authentication cookies will be send with each request automatically.

23

Appendix A Accolade Web API Developer References

Accolade Web API Reference Guide

If APIv2 is called from outside Accolade and Accolade is configured for Windows Integration
authentication, APIv2 can be called without using an access token (providing that the HTTP
request stack supports this).

If APIv2 is called from outside Accolade and Accolade is configured for LDAP or SSO (WS-
Fed, SAMLp, OAuth2 and/or OpenID Connect), an access token should be requested. The
access token should be supplied on each request as HTTP Authorization header with Bearer
scheme (Authorization: Bearer <access token>).

Currently only the Resource Owner Password Credentials Grant flow is supported by
Accolade. This flow requires the submission of username and password to obtain the access
token (see /Token endpoint). Also, the OAuth2 offline scope (aka refresh tokens) is supported;
this means a refresh token (that has a long expiration date) can be used to get an new access
token without supplying the user credentials again.

Note: Currently there is no other means than deleting or de-activating the user in
Accolade to revoke access and refresh tokens.

Batch Support

A batch request combines multiple APIv2 requests into a single POST request to the
/api/v2/$batch endpoint. The payload should be multipart/mixed.

Request Example (only showing GET requests, but POST, PUT, PATCH, and DELETE
requests can be included as well:

Request

POST http://<server>/api/v2/$batch HTTP/1.1

Content-Type: multipart/mixed; boundary="batch_e5b6e99a-61b3-
4369-9331-c87803c7089a"

Host: <host>

Content-Length: 409

Expect: 100-continue

--batch_e5b6e99a-61b3-4369-9331-c87803c7089a

Content-Type: application/http; msgtype=request

GET /api/v2/administration/users(1) HTTP/1.1

Host: <host>

--batch_e5b6e99a-61b3-4369-9331-c87803c7089a

Content-Type: application/http; msgtype=request

GET /api/v2/core/projects HTTP/1.1

Host: <host>

24

Accolade Web API Reference Guide

Sopheon Accolade Version 16.1

Request

--batch_e5b6e99a-61b3-4369-9331-c87803c7089a--

Response Example (only showing GET requests, but POST, PUT, PATCH, and DELETE
requests can be included as well:

Response

HTTP/1.1 200 OK

Cache-Control: no-cache

Pragma: no-cache

Content-Length: 507

Content-Type: multipart/mixed; boundary="2d36ec9b-bf61-4ba9-
b265-ffb7604cff0a"

Expires: -1

Persistent-Auth: true

X-Frame-Options: SAMEORIGIN

Date: Wed, 31 May 2017 13:49:24 GMT

--2d36ec9b-bf61-4ba9-b265-ffb7604cff0a

Content-Type: application/http; msgtype=response

HTTP/1.1 200 OK

api-version: 2.0

Content-Type: application/json; charset=utf-8

{

"id": 1,

"name": "Administrator"

}

--2d36ec9b-bf61-4ba9-b265-ffb7604cff0a

Content-Type: application/http; msgtype=response

HTTP/1.1 200 OK

api-version: 2.0

Content-Type: application/json; charset=utf-8

25

Appendix A Accolade Web API Developer References

Accolade Web API Reference Guide

Response

[

{

"code": "1",

"id": 1,

"name": "Ajax"

}

]

--2d36ec9b-bf61-4ba9-b265-ffb7604cff0a--

NET Framework and Xamarin (.NET for iOS and Andriod app) already have classes to
compose a batch request and parse a batch response. There are several JavaScript libraries
out there that can do the same, we need to select one (preferable an jQuery
extension:batchjs.zip) to be used for Quick Grid customizations.

Standardized Properties

Name Type Description

Id Long Resource ID
Name String Resource display name
SystemName String Resource system name, unique across resource

type, case insensitive
Description String Resource description
Order Long Position of resource in collection
actionDate Date Date of action

Examples:
CreatedDate ClosedDate (no
LastModifiedDate but UpdatedDate instead)

actionById Long ID of user that executed the action

Examples:
CreatedById, ClosedById

IsFlag Boolean A flag

Examples:
IsClosed, IsActive, IsCalculated,
IsShowMessagesEnabled

CanFlag Boolean A flag

Examples:

26

Accolade Web API Reference Guide

Sopheon Accolade Version 16.1

Name Type Description

CanCreateStatusReports

resourceId Long ID of related resources

Examples:
TeamLeaderId, ClassId, ProcessModelId

resource DTO Expanded related resource

Examples:
CreatedBy, ClosedBy, TeamLeader,
Class, ProcessModel

resource +
ParentResource

DTO[] +
DTO

Hierarchical relationships

Examples:
/aNodes + ParentNode, Groups +
ParentGroup

Options Enum Options and flags
Members DTO[] Resource members

Examples:
Project Team, AccessGroup,
SecurityList

ExtendedFields DTO[] Metadata and extended fields

Examples:
Project Metadata, Deliverable
ExtendedFields, User ExtendedFields

Notes String Examples:
StatusText, Comments

typeDownloadUri String Examples:
ProjectDocumentVersionDto.DownloadUri,
GateDocumentDto.TemplateDownloadUri,
ImageDto.DowloadUri

ModelId Long Resource model ID

Examples:
ProcessModelId, PMPhaseId,
PMDeliverableId, PMActivityId,
PMGateId

Links DTO[] Examples:
Associations, ProjectLinks

RequestorRights Enum Resource rights and permissions for the API caller.

27

Appendix A Accolade Web API Developer References

Accolade Web API Reference Guide

Accolade Web API Navigation
In addition to the overview information provided within the online Help, Accolade provides
technical documentation for developers that is available with your Accolade installation. The
documentation, which includes the available methods and call examples, can be accessed at
<server name>/help/apihelp.

If you are unfamiliar with working in APIs or require more technical
support, contact Sopheon's Customer Support group for more information
on training opportunities or additional services.

The Accolade Web API documentation is divided into areas representing different areas where
information can be accessed within Accolade.

Category Description

Administration This category contains the calls that are specific to access
and security within Accolade.

Configuration This category contains the calls that are specific to the
configuration components within Accolade.

Core This category contains the calls that are specific to project
data within Accolade.

Data This category contains the calls that are specific to
accessing the data tables for use with your company's BI
tool of choice.

Important! This category requires an Accolade
API key in order to access, and should not be
used with any advanced configuration within
Accolade. See Creating and Managing Accolade
Data API Keys for more information.

Miscellaneous This category contains the calls that are not applicable to
the remaining categories.

Resource Planning This category contains the calls that are specific to the
Resource Planning data within Accolade.

28

../../../../../Content/WebAPI/PROC_CreatingAPIKeys.htm
../../../../../Content/WebAPI/PROC_CreatingAPIKeys.htm

Sopheon Corporation

6870West 52nd Avenue, Suite 215

Arvada, CO 80002

	About this Guide
	Accolade Web API Overview
	Accolade as a RESTful API
	Accolade API Versioning
	Accolade API Authentication and Access

	API Authentication as an Accolade User
	User Authentication Setup
	Requesting the Accolade Authentication Mode
	Requesting an Access Token
	Call the API with the Access Token
	SSO with two-factor or multi-factor authentication
	Configuration

	Appendix A Accolade Web API Developer References
	Accolade Web API Design
	Versioning
	Restrictions and Rate Limits
	Resources
	Verbs
	Status Codes
	Payload
	Actions and Functions
	OData
	Paging, Filtering, and Data Shaping
	Alternative Keys
	Caching
	Concurrency
	Cross-Origin Resource Sharing (CORS)
	Security
	Batch Support
	Standardized Properties

	Accolade Web API Navigation

